aes.php
22 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
<?php
/**
* @copyright Copyright (c)2009-2013 Nicholas K. Dionysopoulos
* @license GNU General Public License version 3, or later
*
* @since 2.4
*/
// Protection against direct access
defined('_JEXEC') or die();
/**
* AES implementation in PHP (c) Chris Veness 2005-2013.
* Right to use and adapt is granted for under a simple creative commons attribution
* licence. No warranty of any form is offered.
*
* Modified for Akeeba Backup by Nicholas K. Dionysopoulos
* Included for JCE with the kind permission of Nicholas K. Dionysopoulos
*/
class WFUtilEncrypt
{
// Sbox is pre-computed multiplicative inverse in GF(2^8) used in SubBytes and KeyExpansion [�5.1.1]
protected static $Sbox =
array(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16, );
// Rcon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [�5.2]
protected static $Rcon = array(
array(0x00, 0x00, 0x00, 0x00),
array(0x01, 0x00, 0x00, 0x00),
array(0x02, 0x00, 0x00, 0x00),
array(0x04, 0x00, 0x00, 0x00),
array(0x08, 0x00, 0x00, 0x00),
array(0x10, 0x00, 0x00, 0x00),
array(0x20, 0x00, 0x00, 0x00),
array(0x40, 0x00, 0x00, 0x00),
array(0x80, 0x00, 0x00, 0x00),
array(0x1b, 0x00, 0x00, 0x00),
array(0x36, 0x00, 0x00, 0x00), );
protected static $passwords = array();
/**
* AES Cipher function: encrypt 'input' with Rijndael algorithm.
*
* @param input message as byte-array (16 bytes)
* @param w key schedule as 2D byte-array (Nr+1 x Nb bytes) -
* generated from the cipher key by KeyExpansion()
*
* @return ciphertext as byte-array (16 bytes)
*/
public static function Cipher($input, $w)
{ // main Cipher function [�5.1]
$Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES)
$Nr = count($w) / $Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys
$state = array(); // initialise 4xNb byte-array 'state' with input [�3.4]
for ($i = 0; $i < 4 * $Nb; ++$i) {
$state[$i % 4][floor($i / 4)] = $input[$i];
}
$state = self::AddRoundKey($state, $w, 0, $Nb);
for ($round = 1; $round < $Nr; ++$round) { // apply Nr rounds
$state = self::SubBytes($state, $Nb);
$state = self::ShiftRows($state, $Nb);
$state = self::MixColumns($state, $Nb);
$state = self::AddRoundKey($state, $w, $round, $Nb);
}
$state = self::SubBytes($state, $Nb);
$state = self::ShiftRows($state, $Nb);
$state = self::AddRoundKey($state, $w, $Nr, $Nb);
$output = array(4 * $Nb); // convert state to 1-d array before returning [�3.4]
for ($i = 0; $i < 4 * $Nb; ++$i) {
$output[$i] = $state[$i % 4][floor($i / 4)];
}
return $output;
}
protected static function AddRoundKey($state, $w, $rnd, $Nb)
{ // xor Round Key into state S [�5.1.4]
for ($r = 0; $r < 4; ++$r) {
for ($c = 0; $c < $Nb; ++$c) {
$state[$r][$c] ^= $w[$rnd * 4 + $c][$r];
}
}
return $state;
}
protected static function SubBytes($s, $Nb)
{ // apply SBox to state S [�5.1.1]
for ($r = 0; $r < 4; ++$r) {
for ($c = 0; $c < $Nb; ++$c) {
$s[$r][$c] = self::$Sbox[$s[$r][$c]];
}
}
return $s;
}
protected static function ShiftRows($s, $Nb)
{ // shift row r of state S left by r bytes [�5.1.2]
$t = array(4);
for ($r = 1; $r < 4; ++$r) {
for ($c = 0; $c < 4; ++$c) {
$t[$c] = $s[$r][($c + $r) % $Nb];
} // shift into temp copy
for ($c = 0; $c < 4; ++$c) {
$s[$r][$c] = $t[$c];
} // and copy back
} // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES):
return $s; // see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf
}
protected static function MixColumns($s, $Nb)
{ // combine bytes of each col of state S [�5.1.3]
for ($c = 0; $c < 4; ++$c) {
$a = array(4); // 'a' is a copy of the current column from 's'
$b = array(4); // 'b' is a�{02} in GF(2^8)
for ($i = 0; $i < 4; ++$i) {
$a[$i] = $s[$i][$c];
$b[$i] = $s[$i][$c] & 0x80 ? $s[$i][$c] << 1 ^ 0x011b : $s[$i][$c] << 1;
}
// a[n] ^ b[n] is a�{03} in GF(2^8)
$s[0][$c] = $b[0] ^ $a[1] ^ $b[1] ^ $a[2] ^ $a[3]; // 2*a0 + 3*a1 + a2 + a3
$s[1][$c] = $a[0] ^ $b[1] ^ $a[2] ^ $b[2] ^ $a[3]; // a0 * 2*a1 + 3*a2 + a3
$s[2][$c] = $a[0] ^ $a[1] ^ $b[2] ^ $a[3] ^ $b[3]; // a0 + a1 + 2*a2 + 3*a3
$s[3][$c] = $a[0] ^ $b[0] ^ $a[1] ^ $a[2] ^ $b[3]; // 3*a0 + a1 + a2 + 2*a3
}
return $s;
}
/**
* Key expansion for Rijndael Cipher(): performs key expansion on cipher key
* to generate a key schedule.
*
* @param key cipher key byte-array (16 bytes)
*
* @return key schedule as 2D byte-array (Nr+1 x Nb bytes)
*/
public static function KeyExpansion($key)
{ // generate Key Schedule from Cipher Key [�5.2]
$Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES)
$Nk = count($key) / 4; // key length (in words): 4/6/8 for 128/192/256-bit keys
$Nr = $Nk + 6; // no of rounds: 10/12/14 for 128/192/256-bit keys
$w = array();
$temp = array();
for ($i = 0; $i < $Nk; ++$i) {
$r = array($key[4 * $i], $key[4 * $i + 1], $key[4 * $i + 2], $key[4 * $i + 3]);
$w[$i] = $r;
}
for ($i = $Nk; $i < ($Nb * ($Nr + 1)); ++$i) {
$w[$i] = array();
for ($t = 0; $t < 4; ++$t) {
$temp[$t] = $w[$i - 1][$t];
}
if ($i % $Nk == 0) {
$temp = self::SubWord(self::RotWord($temp));
for ($t = 0; $t < 4; ++$t) {
$temp[$t] ^= self::$Rcon[$i / $Nk][$t];
}
} elseif ($Nk > 6 && $i % $Nk == 4) {
$temp = self::SubWord($temp);
}
for ($t = 0; $t < 4; ++$t) {
$w[$i][$t] = $w[$i - $Nk][$t] ^ $temp[$t];
}
}
return $w;
}
protected static function SubWord($w)
{ // apply SBox to 4-byte word w
for ($i = 0; $i < 4; ++$i) {
$w[$i] = self::$Sbox[$w[$i]];
}
return $w;
}
protected static function RotWord($w)
{ // rotate 4-byte word w left by one byte
$tmp = $w[0];
for ($i = 0; $i < 3; ++$i) {
$w[$i] = $w[$i + 1];
}
$w[3] = $tmp;
return $w;
}
/*
* Unsigned right shift function, since PHP has neither >>> operator nor unsigned ints
*
* @param a number to be shifted (32-bit integer)
* @param b number of bits to shift a to the right (0..31)
* @return a right-shifted and zero-filled by b bits
*/
protected static function urs($a, $b)
{
$a &= 0xffffffff;
$b &= 0x1f; // (bounds check)
if ($a & 0x80000000 && $b > 0) { // if left-most bit set
$a = ($a >> 1) & 0x7fffffff; // right-shift one bit & clear left-most bit
$a = $a >> ($b - 1); // remaining right-shifts
} else { // otherwise
$a = ($a >> $b); // use normal right-shift
}
return $a;
}
/**
* Encrypt a text using AES encryption in Counter mode of operation
* - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.
*
* Unicode multi-byte character safe
*
* @param plaintext source text to be encrypted
* @param password the password to use to generate a key
* @param nBits number of bits to be used in the key (128, 192, or 256)
*
* @return encrypted text
*/
public static function AESEncryptCtr($plaintext, $password, $nBits)
{
$blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
if (!($nBits == 128 || $nBits == 192 || $nBits == 256)) {
return '';
} // standard allows 128/192/256 bit keys
// note PHP (5) gives us plaintext and password in UTF8 encoding!
// use AES itself to encrypt password to get cipher key (using plain password as source for
// key expansion) - gives us well encrypted key
$nBytes = $nBits / 8; // no bytes in key
$pwBytes = array();
for ($i = 0; $i < $nBytes; ++$i) {
$pwBytes[$i] = ord(substr($password, $i, 1)) & 0xff;
}
$key = self::Cipher($pwBytes, self::KeyExpansion($pwBytes));
$key = array_merge($key, array_slice($key, 0, $nBytes - 16)); // expand key to 16/24/32 bytes long
// initialise counter block (NIST SP800-38A �B.2): millisecond time-stamp for nonce in
// 1st 8 bytes, block counter in 2nd 8 bytes
$counterBlock = array();
$nonce = floor(microtime(true) * 1000); // timestamp: milliseconds since 1-Jan-1970
$nonceSec = floor($nonce / 1000);
$nonceMs = $nonce % 1000;
// encode nonce with seconds in 1st 4 bytes, and (repeated) ms part filling 2nd 4 bytes
for ($i = 0; $i < 4; ++$i) {
$counterBlock[$i] = self::urs($nonceSec, $i * 8) & 0xff;
}
for ($i = 0; $i < 4; ++$i) {
$counterBlock[$i + 4] = $nonceMs & 0xff;
}
// and convert it to a string to go on the front of the ciphertext
$ctrTxt = '';
for ($i = 0; $i < 8; ++$i) {
$ctrTxt .= chr($counterBlock[$i]);
}
// generate key schedule - an expansion of the key into distinct Key Rounds for each round
$keySchedule = self::KeyExpansion($key);
$blockCount = ceil(strlen($plaintext) / $blockSize);
$ciphertxt = array(); // ciphertext as array of strings
for ($b = 0; $b < $blockCount; ++$b) {
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
// done in two stages for 32-bit ops: using two words allows us to go past 2^32 blocks (68GB)
for ($c = 0; $c < 4; ++$c) {
$counterBlock[15 - $c] = self::urs($b, $c * 8) & 0xff;
}
for ($c = 0; $c < 4; ++$c) {
$counterBlock[15 - $c - 4] = self::urs($b / 0x100000000, $c * 8);
}
$cipherCntr = self::Cipher($counterBlock, $keySchedule); // -- encrypt counter block --
// block size is reduced on final block
$blockLength = $b < $blockCount - 1 ? $blockSize : (strlen($plaintext) - 1) % $blockSize + 1;
$cipherByte = array();
for ($i = 0; $i < $blockLength; ++$i) { // -- xor plaintext with ciphered counter byte-by-byte --
$cipherByte[$i] = $cipherCntr[$i] ^ ord(substr($plaintext, $b * $blockSize + $i, 1));
$cipherByte[$i] = chr($cipherByte[$i]);
}
$ciphertxt[$b] = implode('', $cipherByte); // escape troublesome characters in ciphertext
}
// implode is more efficient than repeated string concatenation
$ciphertext = $ctrTxt.implode('', $ciphertxt);
$ciphertext = base64_encode($ciphertext);
return $ciphertext;
}
/**
* Decrypt a text encrypted by AES in counter mode of operation.
*
* @param ciphertext source text to be decrypted
* @param password the password to use to generate a key
* @param nBits number of bits to be used in the key (128, 192, or 256)
*
* @return decrypted text
*/
public static function AESDecryptCtr($ciphertext, $password, $nBits)
{
$blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
if (!($nBits == 128 || $nBits == 192 || $nBits == 256)) {
return '';
} // standard allows 128/192/256 bit keys
$ciphertext = base64_decode($ciphertext);
// use AES to encrypt password (mirroring encrypt routine)
$nBytes = $nBits / 8; // no bytes in key
$pwBytes = array();
for ($i = 0; $i < $nBytes; ++$i) {
$pwBytes[$i] = ord(substr($password, $i, 1)) & 0xff;
}
$key = self::Cipher($pwBytes, self::KeyExpansion($pwBytes));
$key = array_merge($key, array_slice($key, 0, $nBytes - 16)); // expand key to 16/24/32 bytes long
// recover nonce from 1st element of ciphertext
$counterBlock = array();
$ctrTxt = substr($ciphertext, 0, 8);
for ($i = 0; $i < 8; ++$i) {
$counterBlock[$i] = ord(substr($ctrTxt, $i, 1));
}
// generate key schedule
$keySchedule = self::KeyExpansion($key);
// separate ciphertext into blocks (skipping past initial 8 bytes)
$nBlocks = ceil((strlen($ciphertext) - 8) / $blockSize);
$ct = array();
for ($b = 0; $b < $nBlocks; ++$b) {
$ct[$b] = substr($ciphertext, 8 + $b * $blockSize, 16);
}
$ciphertext = $ct; // ciphertext is now array of block-length strings
// plaintext will get generated block-by-block into array of block-length strings
$plaintxt = array();
for ($b = 0; $b < $nBlocks; ++$b) {
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
for ($c = 0; $c < 4; ++$c) {
$counterBlock[15 - $c] = self::urs($b, $c * 8) & 0xff;
}
for ($c = 0; $c < 4; ++$c) {
$counterBlock[15 - $c - 4] = self::urs(($b + 1) / 0x100000000 - 1, $c * 8) & 0xff;
}
$cipherCntr = self::Cipher($counterBlock, $keySchedule); // encrypt counter block
$plaintxtByte = array();
for ($i = 0; $i < strlen($ciphertext[$b]); ++$i) {
// -- xor plaintext with ciphered counter byte-by-byte --
$plaintxtByte[$i] = $cipherCntr[$i] ^ ord(substr($ciphertext[$b], $i, 1));
$plaintxtByte[$i] = chr($plaintxtByte[$i]);
}
$plaintxt[$b] = implode('', $plaintxtByte);
}
// join array of blocks into single plaintext string
$plaintext = implode('', $plaintxt);
return $plaintext;
}
/**
* AES encryption in CBC mode. This is the standard mode (the CTR methods
* actually use Rijndael-128 in CTR mode, which - technically - isn't AES).
* The data length is tucked as a 32-bit unsigned integer (little endian)
* after the ciphertext. It supports AES-128, AES-192 and AES-256.
*
* @since 3.0.1
*
* @author Nicholas K. Dionysopoulos
*
* @param string $plaintext The data to encrypt
* @param string $password Encryption password
* @param int $nBits Encryption key size. Can be 128, 192 or 256
*
* @return string The ciphertext
*/
public static function AESEncryptCBC($plaintext, $password, $nBits = 128)
{
if (!($nBits == 128 || $nBits == 192 || $nBits == 256)) {
return false;
} // standard allows 128/192/256 bit keys
if (!function_exists('mcrypt_module_open')) {
return false;
}
// Try to fetch cached key/iv or create them if they do not exist
$lookupKey = $password.'-'.$nBits;
if (array_key_exists($lookupKey, self::$passwords)) {
$key = self::$passwords[$lookupKey]['key'];
$iv = self::$passwords[$lookupKey]['iv'];
} else {
// use AES itself to encrypt password to get cipher key (using plain password as source for
// key expansion) - gives us well encrypted key
$nBytes = $nBits / 8; // no bytes in key
$pwBytes = array();
for ($i = 0; $i < $nBytes; ++$i) {
$pwBytes[$i] = ord(substr($password, $i, 1)) & 0xff;
}
$key = self::Cipher($pwBytes, self::KeyExpansion($pwBytes));
$key = array_merge($key, array_slice($key, 0, $nBytes - 16)); // expand key to 16/24/32 bytes long
$newKey = '';
foreach ($key as $int) {
$newKey .= chr($int);
}
$key = $newKey;
// Create an Initialization Vector (IV) based on the password, using the same technique as for the key
$nBytes = 16; // AES uses a 128 -bit (16 byte) block size, hence the IV size is always 16 bytes
$pwBytes = array();
for ($i = 0; $i < $nBytes; ++$i) {
$pwBytes[$i] = ord(substr($password, $i, 1)) & 0xff;
}
$iv = self::Cipher($pwBytes, self::KeyExpansion($pwBytes));
$newIV = '';
foreach ($iv as $int) {
$newIV .= chr($int);
}
$iv = $newIV;
self::$passwords[$lookupKey]['key'] = $key;
self::$passwords[$lookupKey]['iv'] = $iv;
}
$td = mcrypt_module_open(MCRYPT_RIJNDAEL_128, '', MCRYPT_MODE_CBC, '');
mcrypt_generic_init($td, $key, $iv);
$ciphertext = mcrypt_generic($td, $plaintext);
mcrypt_generic_deinit($td);
$ciphertext .= pack('V', strlen($plaintext));
return $ciphertext;
}
/**
* AES decryption in CBC mode. This is the standard mode (the CTR methods
* actually use Rijndael-128 in CTR mode, which - technically - isn't AES).
*
* Supports AES-128, AES-192 and AES-256. It supposes that the last 4 bytes
* contained a little-endian unsigned long integer representing the unpadded
* data length.
*
* @since 3.0.1
*
* @author Nicholas K. Dionysopoulos
*
* @param string $ciphertext The data to encrypt
* @param string $password Encryption password
* @param int $nBits Encryption key size. Can be 128, 192 or 256
*
* @return string The plaintext
*/
public static function AESDecryptCBC($ciphertext, $password, $nBits = 128)
{
if (!($nBits == 128 || $nBits == 192 || $nBits == 256)) {
return false;
} // standard allows 128/192/256 bit keys
if (!function_exists('mcrypt_module_open')) {
return false;
}
// Try to fetch cached key/iv or create them if they do not exist
$lookupKey = $password.'-'.$nBits;
if (array_key_exists($lookupKey, self::$passwords)) {
$key = self::$passwords[$lookupKey]['key'];
$iv = self::$passwords[$lookupKey]['iv'];
} else {
// use AES itself to encrypt password to get cipher key (using plain password as source for
// key expansion) - gives us well encrypted key
$nBytes = $nBits / 8; // no bytes in key
$pwBytes = array();
for ($i = 0; $i < $nBytes; ++$i) {
$pwBytes[$i] = ord(substr($password, $i, 1)) & 0xff;
}
$key = self::Cipher($pwBytes, self::KeyExpansion($pwBytes));
$key = array_merge($key, array_slice($key, 0, $nBytes - 16)); // expand key to 16/24/32 bytes long
$newKey = '';
foreach ($key as $int) {
$newKey .= chr($int);
}
$key = $newKey;
// Create an Initialization Vector (IV) based on the password, using the same technique as for the key
$nBytes = 16; // AES uses a 128 -bit (16 byte) block size, hence the IV size is always 16 bytes
$pwBytes = array();
for ($i = 0; $i < $nBytes; ++$i) {
$pwBytes[$i] = ord(substr($password, $i, 1)) & 0xff;
}
$iv = self::Cipher($pwBytes, self::KeyExpansion($pwBytes));
$newIV = '';
foreach ($iv as $int) {
$newIV .= chr($int);
}
$iv = $newIV;
self::$passwords[$lookupKey]['key'] = $key;
self::$passwords[$lookupKey]['iv'] = $iv;
}
// Read the data size
$data_size = unpack('V', substr($ciphertext, -4));
// Decrypt
$td = mcrypt_module_open(MCRYPT_RIJNDAEL_128, '', MCRYPT_MODE_CBC, '');
mcrypt_generic_init($td, $key, $iv);
$plaintext = mdecrypt_generic($td, substr($ciphertext, 0, -4));
mcrypt_generic_deinit($td);
// Trim padding, if necessary
if (strlen($plaintext) > $data_size) {
$plaintext = substr($plaintext, 0, $data_size);
}
return $plaintext;
}
}